
Comparative study of mutagenesis by O6-methylguanine in the human Ha-ras oncogene inE.coliandin vitro
Author(s) -
Vasiliki Pletsa,
Constantinos Troungos,
Vassilis L. Souliotis,
Soterios A. Kyrtopoulos
Publication year - 1994
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/22.19.3846
Subject(s) - klenow fragment , biology , mutagenesis , microbiology and biotechnology , dna , transformation (genetics) , dna polymerase , dna polymerase i , site directed mutagenesis , dna repair , dna replication , mutation , mutant , polymerase , genetics , polymerase chain reaction , exonuclease , gene , reverse transcriptase
Single residues of O6-methylguanine (O6-meG) were introduced into the first or second position of codon 12 (GGC; positions 12G1 or 12G2, respectively) or the first position of codon 13 (GGT; position 13G1) of the human Ha-ras oncogene in phage M13-based vectors. After transformation of E.coli, higher mutant plaque frequencies (MPF) were observed at 12G1 and 13G1 than at 12G2 if O6-alkylguanine-DNA alkyltransferase (AGT) had been depleted, while similar MPF were observed at all three positions in the presence of active AGT. Taken together, these observations suggest reduced AGT repair at 12G2. Kinetic analysis of in vitro DNA replication in the same sequences using E. coli DNA polymerase I (Klenow fragment) indicated that variation in polymerase fidelity may contribute to the overall sequence specificity of mutagenesis. By constructing vectors which direct methyl-directed mismatch repair to the (+) or the (-) strand and comparing the MPF values in bacteria proficient or deficient in mismatch repair and/or AGT, it was concluded that, while mutS-mediated mismatch repair did not remove O6-meG from O6-meG:C pairs, this repair mechanism can affect O6-meG mutagenesis by repairing G:T pairs generated through AGT-induced demethylation of O6-meG:T replication intermediates.