Isolation of a cDNA encoding the adenovirus E1A enhancer binding protein: a new human member of theetsoncogene family
Author(s) -
Fumihiro Higashino,
Koichi Yoshida,
Yukako Fujinaga,
Koichi Kamio,
Kei Fujinaga
Publication year - 1993
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/21.3.547
Subject(s) - biology , enhancer , complementary dna , genetics , isolation (microbiology) , dna binding protein , protein family , microbiology and biotechnology , gene , transcription factor , bioinformatics
The cDNA encoding adenovirus E1A enhancer-binding protein E1A-F was isolated by screening a HeLa cell lambda gt11 expression library for E1A-F site-specific DNA binding. One cDNA clone produced recombinant E1A-F protein with the same DNA binding specificity as that endogenous to HeLa cells. Sequence analysis of the cDNA showed homology with the ETS-domain, a region required for sequence-specific DNA binding and common to all ets oncogene members. Analysis of the longest cDNA revealed about a 94% identity in amino acids between human E1A-F and mouse PEA3 (polyomavirus enhancer activator 3), a recently characterized ets oncogene member. E1A-F was encoded by a 2.5kb mRNA in HeLa cells, which was found to increase during the early period of adenovirus infection. In contrast, ets-2 mRNA was significantly reduced in infected HeLa cells. The results indicate that E1A enhancer binding protein E1A-F is a member of the ets oncogene family and is probably a human homologue of mouse PEA3.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom