
A Molecular basis for human hypersensitivity of aminoglyscoside antibiotics
Author(s) -
Tim Hutchin,
Ian S. Haworth,
Koichiro Higashi,
Nathan FischelGhodsian,
Mark Stoneking,
N. Saha,
Cathy Arnos,
Gino A Cortopassi
Publication year - 1993
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/21.18.4174
Subject(s) - biology , antibiotics , computational biology , microbiology and biotechnology , genetics
We have investigated the distribution of mitochondrial DNA polymorphisms in a rare maternally transmitted genetic trait that causes hypersensitivity to aminoglycoside antibiotics, in the hope that a characterization of its molecular basis might provide a molecular and cellular understanding of aminoglycoside-induced deafness (AGD). Here we report that the frequency of a particular mitochondrial DNA polymorphism, 1555G, is associated nonrandomly with aminoglycoside-induced deafness in two Japanese pedigrees, bringing the frequency of this polymorphism to 5 occurrences in 5 pedigrees of AGD, and in 4 of 78 sporadic cases in which deafness was thought to be the result of aminoglycoside exposure; both frequencies are significantly different from the occurrence of this mutation in the hearing population, which was 0 in 414 individuals surveyed. The 1555G polymorphism occurred in none of 34 aminoglycoside-resistant individuals. We propose a specific molecular mechanism for aminoglycoside hypersensitivity in individuals carrying the 1555G polymorphism, based on the three-dimensional structure of the ribosome, in which the 1555G polymorphism favors aminoglycoside binding sterically, by increasing access to the the ribosome cleft.