z-logo
open-access-imgOpen Access
Repair methylation of parental DNA In synchronized cultures of Novikoff hepatoma cells
Author(s) -
Julia K. Hilliard,
Thomas W. Sneider
Publication year - 1975
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/2.6.809
Subject(s) - biology , methylation , dna methylation , dna , genetics , microbiology and biotechnology , gene , gene expression
Parental and filial DNA strands were isolated from a Novikoff rat hepatoma cell line, synchronized by S-phase arrest with excess thymidine, that had completed up to one round of DNA replication in the presence of (14-C-methyl)methionine and (6-3-H) bromodeoxyuridine. Both strands were methylated, the proportion of total methyl label in parental DNA increasing slightly with time in S-phase. The studies were repeated with (14-C-methyl)methionine and (3-H)deoxycytidine to determine if parental methylation occurred on extant or repair-inserted cytosine residues. Both (14-C) and (3-H) were found in parental DNA. The (14-C)/(3-H) ration of parental DNA-5-methylcytosine was about twice that in filial DNA while the (3-H) data showed twice the concentration of 5-methylcytosine in parental compared to filial DNA. Thus parental methylation occurred on repair-inserted cytosine residues and resulted in overmethylation. That the DNA damage and repair was due to 5-phase arrest was shown by repeating the studies using a sequential mitotic-G1 arrest method. With this method little (14-C) or (3-H) was found in parental DNA. We conclude that S-phase arrest leads to DNA damage and repair with subsequent overmethylation of repair-inserted cytosines; that sequential mitotic-G1 arrest minimizes DNA damage; and, that the latter technique, suitable for synchronization of large quantities of cells, may prove useful in relatively artifact-free studies of eukaryotic DNA replication.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here