z-logo
open-access-imgOpen Access
S-Adenosylhomocysteine inhibition of three purified tRNA methyltransferases from rat liver
Author(s) -
Jane M. Glick,
Susan R. Ross,
Phoebe S. Leboy
Publication year - 1975
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/2.10.1639
Subject(s) - biology , methyltransferase , transfer rna , biochemistry , genetics , microbiology and biotechnology , rna , dna , gene , methylation
Three tRNA methyltransferases from rat liver have been fractionated and purified greater than 100-fold. These enzymes have been examined for their sensitivity to inhibition by S-adenosylhomocysteine (SAH). The methyltransferase which forms m2-guanine in the region between the dihydrouridine loop and the acceptor stem of tRNA (m2-guanine methyltransferase I) is least sensitive to SAH inhibition, with a Ki of 8 muM. The enzyme responsible for forming m2-guanine between the dihydrouridine and anticodon loops (m2-guanine methyltransferase II) has a Ki of 0.3 muM, while m1-adenine methyltransferase shows intermediate sensitivity to SAH (Ki = 2.4 muM). All three methyltransferases have similar Km's for the S-adenosylmethionine substrate (1.5-2.0 muM). These results are consistent with the hypothesis that activity of individual tRNA methyltransferases may be controlled by enzyme systems which alter cellular SAH levels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom