z-logo
open-access-imgOpen Access
Physical and biochemical characterization of recombination-dependent synthesis of linear plasmid multimers inBacillus subtilis
Author(s) -
Heinrich Leonhardt,
Rudi Lurz,
Juan C. AIonso
Publication year - 1991
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/19.3.497
Subject(s) - biology , plasmid , bacillus subtilis , dna , dna replication , replication protein a , in vitro recombination , microbiology and biotechnology , recombinant dna , genetics , dna binding protein , molecular cloning , gene , transcription factor , peptide sequence , bacteria
The synthesis and structure of linear multimeric plasmid molecules (hmw DNA) in Bacillus subtilis were investigated. The replication of covalently-closed-circular supercoiled (form I) DNA requires the rate-limiting plasmid-encoded replication initiation protein. Unlike form I, hmw DNA synthesis is partially resistant to inhibition of cellular transcription or translation and requires the host DnaB protein. In addition, hmw DNA synthesis involves host recombination and repair functions (RecE and Poll). Analysis of hmw DNA by electron microscopy displayed linear DNA molecules up to 100 kb in size, which were either single-stranded, double-stranded or double-stranded with single-stranded ends. Structural features of hmw DNA molecules were mapped by means of heteroduplex studies using defined strand-specific probes. The results suggest that a recombination intermediate, but not plasmid-encoded replication, is involved in the initiation of hmw DNA synthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom