Open Access
The four human muscle regulatory helix-loop-helix proteins Myf3-Myf6 exhibit similar hetero-dimerizartion and DNA binding properties
Author(s) -
Thomas Braun,
Hans Henning Arnold
Publication year - 1991
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/19.20.5645
Subject(s) - biology , helix (gastropod) , dna , dna binding protein , basic helix loop helix , biophysics , microbiology and biotechnology , genetics , gene , transcription factor , zoology , gastropoda
The muscle regulatory proteins Myf3, Myf4, Myf5, and Myf6 share a highly conserved DNA binding and dimerization domain consisting of a cluster of basic amino acids and a potential helix-loop-helix structure. Here we demonstrate that the four human muscle-specific HLH proteins have similar DNA binding and dimerization properties. The members of this family form protein complexes of comparable stability with the ubiquitously expressed HLH proteins E12, E2-2, and E2-5 and bind to the conserved DNA sequence CANNTG designated as E-box with similar efficiency in vitro. The binding affinities of the various complexes are greatly influenced by the variable internal and flanking nucleotides of the consensus motif. Combinations of Myf proteins with one another and with lyl-1, and HLH protein from human T cells, do not bind to DNA in vitro. Our results suggest that combinatorial associations of the various tissue-specific and more widely expressed HLH factors do not result in differential recognition of DNA sequences by Myf proteins.