z-logo
open-access-imgOpen Access
The protein factor which binds to the upstream activating sequence ofSaccharomyces cerevisiae ENO1gene
Author(s) -
Masayuki Machida,
Hiroshi Uemura,
Yoshifumi Jigami,
Hideaki Tanaka
Publication year - 1988
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/16.4.1407
Subject(s) - biology , saccharomyces cerevisiae , genetics , gene , upstream (networking) , sequence (biology) , fungal protein , computer network , computer science
Using a gel retardation assay it was shown that the 87 bp DNA fragment (UAS87) containing the upstream activating sequence (UAS) of S. cerevisiae EN01 gene and a nuclear extract gave rise to three migration-retarded species specific to UAS87. Heat- or proteinase-treatment of the nuclear extract revealed that these species were protein-DNA complexes. The precise binding region of the protein identified by DNaseI protection analysis was found to include a CCAAACA sequence which forms a dyad-symmetrical structure. The amount of one of the three migration-retarded species significantly increased when cells were grown in medium containing a gluconeogenic carbon source. The introduction of pGCR8, a multicopy plasmid containing GCR1 gene, a regulatory gene controlling the expression of several glycolytic enzymes, showed no effect on the amount of three migration-retarded species.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom