
Mouse muscle nicotinic acetylcholine receptor γ subunit: cDNA sequence and gene expression
Author(s) -
Lei Yu,
Robert J. LaPolla,
Norman Davidson
Publication year - 1986
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/14.8.3539
Subject(s) - biology , nicotinic acetylcholine receptor , complementary dna , acetylcholine receptor , gene expression , gene , microbiology and biotechnology , protein subunit , interleukin 10 receptor, alpha subunit , genetics , gamma aminobutyric acid receptor subunit alpha 1 , nucleic acid sequence , receptor , g alpha subunit
Clones coding for the mouse nicotinic acetylcholine receptor (AChR) gamma subunit precursor have been selected from a cDNA library derived from a mouse myogenic cell line and sequenced. The deduced protein sequence consists of a signal peptide of 22 amino acid residues and a mature gamma subunit of 497 amino acid residues. There is a high degree of sequence conservation between this mouse sequence and published human and calf AChR gamma subunits and, after allowing for functional amino acid substitutions, also to the more distantly related chicken and Torpedo AChR gamma subunits. The degree of sequence conservation is especially high in the four putative hydrophobic membrane spanning regions, supporting the assignment of these domains. RNA blot hybridization showed that the mRNA level of the gamma subunit increases by 30 fold or more upon differentiation of the two mouse myogenic cell lines, BC3H-1 and C2C12, suggesting that the primary controls for changes in gene expression during differentiation are at the level of transcription. One cDNA clone was found to correspond to a partially processed nuclear transcript containing two as yet unspliced intervening sequences.