Open Access
The spread of sequence variants inRattussatellite DNAs
Author(s) -
David Epstein,
Frank Witney,
Anthony V. Furano
Publication year - 1984
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/12.2.973
Subject(s) - satellite dna , satellite , tandem repeat , biology , homologous chromosome , base pair , genetics , sequence (biology) , dna , concerted evolution , repeated sequence , dimer , tandem , chromosome , phylogenetic tree , gene , physics , genome , materials science , nuclear magnetic resonance , astronomy , composite material
The genus Rattus has two related families of satellite DNA: Satellite I consists of tandem arrays of a 370 base pair repeat unit which is a dimer of two 185 base pair portions (a, b) which are about 60% homologous. Satellite I' consists of tandem arrays of a 185 base pair repeat unit (a') which is about 85% homologous to a and 60% homologous to b. R. norvegicus contains only satellite I but R. rattus contains both satellites I and I'. We examined certain aspects of satellite DNA evolution by comparing the spacing at which variant repeat units of each satellite have spread among non-variant repeat units in these two species. With but one exception, in R. rattus, 15 different variant repeat units have spread among non-variant repeat units of satellite I, with a spacing equal to the length of the (a,b) dimer. Similarly, fourteen different variant repeat units of the monomeric satellite I' have mixed among non-variant repeat units with a spacing equal to the length of the (a') monomer. These results suggest that a mechanism involving homologous interaction among satellite sequences could account for the spread of variant family members. We also found that a sequence variant present in certain portions of the dimeric repeat unit of satellite I is more efficiently amplified (or less efficiently corrected) than variants occurring in other regions. This was not true for the monomeric repeat unit of satellite I'.