z-logo
open-access-imgOpen Access
Eutherian-Specific Gene TRIML2 Attenuates Inflammation in the Evolution of Placentation
Author(s) -
Xuzhe Zhang,
Mihaela Pavličev,
Helen Jones,
Louis J. Muglia
Publication year - 2019
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msz238
Subject(s) - biology , placentation , proinflammatory cytokine , trophoblast , downregulation and upregulation , placenta , allorecognition , evolution of mammals , inflammation , eutheria , microbiology and biotechnology , genetics , immunology , fetus , gene , pregnancy , paleontology , phanerozoic , structural basin , major histocompatibility complex , cenozoic
Evolution of highly invasive placentation in the stem lineage of eutherians and subsequent extension of pregnancy set eutherians apart from other mammals, that is, marsupials with short-lived placentas, and oviparous monotremes. Recent studies suggest that eutherian implantation evolved from marsupial attachment reaction, an inflammatory process induced by the direct contact of fetal placenta with maternal endometrium after the breakdown of the shell coat, and shortly before the onset of parturition. Unique to eutherians, a dramatic downregulation of inflammation after implantation prevents the onset of premature parturition, and is critical for the maintenance of gestation. This downregulation likely involved evolutionary changes on maternal as well as fetal/placental side. Tripartite-motif family-like2 (TRIML2) only exists in eutherian genomes and shows preferential expression in preimplantation embryos, and trophoblast-derived structures, such as chorion and placental disc. Comparative genomic evidence supports that TRIML2 originated from a gene duplication event in the stem lineage of Eutheria that also gave rise to eutherian TRIML1. Compared with TRIML1, TRIML2 lost the catalytic RING domain of E3 ligase. However, only TRIML2 is induced in human choriocarcinoma cell line JEG3 with poly(I:C) treatment to simulate inflammation during viral infection. Its knockdown increases the production of proinflammatory cytokines and reduces trophoblast survival during poly(I:C) stimulation, while its overexpression reduces proinflammatory cytokine production, supporting TRIML2's role as a regulatory inhibitor of the inflammatory pathways in trophoblasts. TRIML2's potential virus-interacting PRY/SPRY domain shows significant signature of selection, suggesting its contribution to the evolution of eutherian-specific inflammation regulation during placentation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here