z-logo
open-access-imgOpen Access
CellCoal: Coalescent Simulation of Single-Cell Sequencing Samples
Author(s) -
David Posada
Publication year - 2020
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msaa025
Subject(s) - biology , coalescent theory , single cell sequencing , multicellular organism , computational biology , dna sequencing , deep sequencing , somatic cell , single cell analysis , genetics , evolutionary biology , exome sequencing , mutation , phylogenetics , genome , cell , gene
Our capacity to study individual cells has enabled a new level of resolution for understanding complex biological systems such as multicellular organisms or microbial communities. Not surprisingly, several methods have been developed in recent years with a formidable potential to investigate the somatic evolution of single cells in both healthy and pathological tissues. However, single-cell sequencing data can be quite noisy due to different technical biases, so inferences resulting from these new methods need to be carefully contrasted. Here, I introduce CellCoal, a software tool for the coalescent simulation of single-cell sequencing genotypes. CellCoal simulates the history of single-cell samples obtained from somatic cell populations with different demographic histories and produces single-nucleotide variants under a variety of mutation models, sequencing read counts, and genotype likelihoods, considering allelic imbalance, allelic dropout, amplification, and sequencing errors, typical of this type of data. CellCoal is a flexible tool that can be used to understand the implications of different somatic evolutionary processes at the single-cell level, and to benchmark dedicated bioinformatic tools for the analysis of single-cell sequencing data. CellCoal is available at https://github.com/dapogon/cellcoal.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom