Jointly Inferring the Dynamics of Population Size and Sampling Intensity from Molecular Sequences
Author(s) -
Kris V. Parag,
Louis du Plessis,
Oliver G. Pybus
Publication year - 2020
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msaa016
Subject(s) - coalescent theory , sampling (signal processing) , population , inference , population size , biology , skyline , estimator , approximate bayesian computation , sequence (biology) , effective population size , bayesian probability , statistics , evolutionary biology , computer science , phylogenetic tree , data mining , mathematics , artificial intelligence , genetics , demography , filter (signal processing) , sociology , gene , computer vision , genetic variation
Estimating past population dynamics from molecular sequences that have been sampled longitudinally through time is an important problem in infectious disease epidemiology, molecular ecology, and macroevolution. Popular solutions, such as the skyline and skygrid methods, infer past effective population sizes from the coalescent event times of phylogenies reconstructed from sampled sequences but assume that sequence sampling times are uninformative about population size changes. Recent work has started to question this assumption by exploring how sampling time information can aid coalescent inference. Here, we develop, investigate, and implement a new skyline method, termed the epoch sampling skyline plot (ESP), to jointly estimate the dynamics of population size and sampling rate through time. The ESP is inspired by real-world data collection practices and comprises a flexible model in which the sequence sampling rate is proportional to the population size within an epoch but can change discontinuously between epochs. We show that the ESP is accurate under several realistic sampling protocols and we prove analytically that it can at least double the best precision achievable by standard approaches. We generalize the ESP to incorporate phylogenetic uncertainty in a new Bayesian package (BESP) in BEAST2. We re-examine two well-studied empirical data sets from virus epidemiology and molecular evolution and find that the BESP improves upon previous coalescent estimators and generates new, biologically useful insights into the sampling protocols underpinning these data sets. Sequence sampling times provide a rich source of information for coalescent inference that will become increasingly important as sequence collection intensifies and becomes more formalized.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom