z-logo
open-access-imgOpen Access
Valproic acid triggers radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment in a rat model of breast cancer
Author(s) -
Liya Jin,
Wenhua Duan,
Zuchao Cai,
David Lim,
Zhihui Feng
Publication year - 2021
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1093/jrr/rrab037
Subject(s) - abscopal effect , cancer research , vorinostat , tumor microenvironment , granzyme b , chemistry , cd8 , apoptosis , cd68 , immune system , immunohistochemistry , medicine , pathology , histone deacetylase , immunotherapy , immunology , histone , biochemistry , tumor cells , gene
An abscopal effect occurs when localized radiotherapy causes the regression of tumors distant from the irradiated site. However, such a clinically detectable abscopal effect from radiotherapy alone is rare. This study investigated whether valproic acid ([VPA], a histone deacetylase inhibitor [HDACi]) treatment can stimulate radiation-induced abscopal effect. We used 7,12-dimethylbenz[a]anthracene, a typical environmental carcinogen, to establish a rat model with multiple breast tumors. Only one tumor received 8 Gy fractionated doses of X-rays (2 Gy daily fractions over four days) and 200 mg/kg VPA was administered intraperitoneally. We monitored the growth of both irradiated and unirradiated tumors after treatments. The unirradiated tumor was collected for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC) (CD8, Granzyme B, Cleaved Caspase-3, BrdU, Ki67, F4/80 and CD68), double immunofluorescence (F4/80 and CD86), Western blot (Cleaved Caspase-3) and qRT-PCR (CD86, CD163, IL-1β, IL-6, IL-12, IL-23, IL-10, TGF-β) analysis. We found ionizing radiation (IR) + VPA treatment inhibited both irradiated and unirradiated tumor growth as compared to IR alone. Such observe abscopal effect was mediated by the recruitment of activated CD8+ T cells into the unirradiated tumor sites, which released Granzyme B to cause tumor cell apoptosis. Furthermore, IR + VPA treatment led to macrophages infiltration into the unirradiated tumor sites and polarization to M1 phenotype, resulted in increased levels of pro-inflammatory cytokines such as IL-1β and IL-12, and decreased levels of anti-inflammatory cytokines such as IL-10 and TGF-β. Our data supports the proposition that VPA may be a potential therapeutic candidate to trigger radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here