
High-level expression of an acidic thermostable xylanase in Pichia pastoris and its application in weaned piglets
Author(s) -
Jian Wang,
Yajing Liu,
Yongzhi Yang,
Chengling Bao,
Yunhe Cao
Publication year - 2019
Publication title -
journal of animal science/journal of animal science ... and asas reference compendium
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.928
H-Index - 156
eISSN - 1525-3015
pISSN - 0021-8812
DOI - 10.1093/jas/skz364
Subject(s) - cecum , ileum , xylanase , biology , food science , feed conversion ratio , chemistry , biochemistry , microbiology and biotechnology , endocrinology , enzyme , body weight , ecology
An acidic thermostable xylanase (AT-xynA) which was stable at low pH and high temperature was considered to have great potential in animal feed. For large-scale production, AT-xynA activity was enhanced about 1-fold in Pichia pastoris by constructing a double-copy expression strain in this study. Furthermore, impacts of different AT-xynA levels on growth performance, nutrient digestibility, short-chain fatty acids, and bacterial community in weaned piglets were determined. Compared with the control group, ADFI and ADG were higher for the pigs fed 4,000 or 6,000 U/kg AT-xynA (P < 0.05). AT-xynA supplementation also significantly increased the digestibility of OM, GE, and DM (P < 0.05). AT-xynA supplementation increased the concentrations of acetate in ileal (P < 0.01) and cecal digesta (P < 0.05). Isobutyrate (P < 0.05) and valerate (P < 0.05) concentrations in colonic digesta also significantly increased compared with the control group. AT-xynA supplementation increased the abundance of Lactobacillus in the ileal, cecal, and colonic digesta of weaned piglets (P < 0.05). AT-xynA alleviated anti-nutritional effects of nonstarch polysaccharides (NSP) by preventing the growth of Pateurella and Leptotrichia in the ileum (P < 0.05). AT-xynA increased the abundance of NSP-degrading bacteria, such as Ruminococcaceae, Prevotella in the cecum and colon (P < 0.05). In summary, AT-xynA addition could improve the growth performance of weaned piglets by altering gut microbiota.