Open Access
Differences in copper and selenium metabolism between Angus (Bos taurus) and Brahman (Bos indicus) cattle
Author(s) -
Juliana Ranches,
R. I. M. Alves,
Marcelo Vedovatto,
Elizabeth Palmer,
Philipe Moriel,
J. D. Arthington
Publication year - 2021
Publication title -
journal of animal science/journal of animal science ... and asas reference compendium
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.928
H-Index - 156
eISSN - 1525-3015
pISSN - 0021-8812
DOI - 10.1093/jas/skab048
Subject(s) - brahman , zoology , ice calving , breed , biology , colostrum , beef cattle , selenium , veterinary medicine , lactation , pregnancy , chemistry , medicine , immunology , genetics , organic chemistry , antibody
A 2-yr study was conducted at the Range Cattle Research and Education Center, University of Florida - Institute of Food and Agricultural Sciences (IFAS) (Ona, FL), to evaluate differences in the metabolism of Cu and Se of Angus (Bos taurus) and Brahman (Bos indicus) cattle. Thirty-two pregnant beef cows (n = 8 Brahman and 8 Angus/yr) were enrolled in the study in the first trimester of gestation. This study consisted of three phases: 1) restriction (day 0 to 90), 2) supplementation (day 91 to 150), and 3) calving. During all three phases, cows were individually fed and housed in partially covered drylot pens. During the restriction and supplementation phases, cows were provided a 1.5 kg/d of a grain-based concentrate supplement, which was fortified with flowers of S (50 g of supplemental S/cow daily; restriction phase) or Cu and Se (100 and 3 mg/d of Cu and Se, respectively; supplementation phase). Blood and liver samples were collected from all cows at 30 d intervals and from both cows and calves within 24 h of calving. Colostrum and milk samples were collected at calving and 7 d after birth. All data were analyzed using the MIXED procedure of SAS, where cow and calf were the experimental unit. During the restriction phase, a breed × day effect (P = 0.03) was observed where Brahman had greater liver Cu concentration than Angus cows in all sampling days. For liver Se concentration, a tendency (P = 0.07) for a breed effect was observed where Angus cows tended to have greater liver Se concentration than Brahman. During the supplementation phase, breed (P < 0.001) and day (P < 0.01) effects were observed, where Brahman cows had greater liver Cu concentration than Angus. For liver Se concentration, a day effect (P < 0.001) was observed, where liver Se concentration increased (P < 0.001) from day 90 to 120 and remained unchanged (P = 0.86) until day 150. At calving, no effects of breed (P = 0.34) were observed for liver Cu concentration of cows; however, Brahman calves tended (P = 0.09) to have greater liver Cu concentration than Angus calves. For Se liver concentration at calving, Angus cows tended (P = 0.07) to have greater liver Se concentration than Brahman cows; however, no breed differences (P = 0.70) were observed for liver Se concentration of calves at birth. In summary, substantial differences in multiple indicators of Cu and Se status were observed between Angus and Brahman cattle, implying that Angus and Brahman cattle possibly have different mechanisms to maintain adequate Cu and Se status.