z-logo
open-access-imgOpen Access
Beef cattle responses to pre-grazing sward height and low level of energy supplementation on tropical pastures
Author(s) -
João Ricardo Rebouças Dórea,
Vinícius N Gouvêa,
Luiz Roberto Dell Agostinho Neto,
Sila C. da Silva,
G. E. Brink,
Alexandre Vaz Pires,
Flávio Augusto Portela Santos
Publication year - 2020
Publication title -
journal of animal science/journal of animal science ... and asas reference compendium
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.928
H-Index - 156
eISSN - 1525-3015
pISSN - 0021-8812
DOI - 10.1093/jas/skaa163
Subject(s) - grazing , brachiaria , dry matter , forage , zoology , latin square , beef cattle , interception , biology , pasture , agronomy , nutrient , rumen , ecology , food science , fermentation
The objective of this study was to investigate the effects of energy supplementation and pre-grazing sward height on grazing behavior, nutrient intake, digestion, and metabolism of cattle in tropical pastures managed as a rotational grazing system. Eight rumen-cannulated Nellore steers (24 mo of age; 300 ± 6.0 kg body weight [BW]) were used in a replicated 4 × 4 Latin square design. Treatments consisted of two levels of energy supplementation (0% [none] or 0.3% of BW of ground corn on an as-fed basis) and two pre-grazing sward heights (25 cm [defined by 95% light interception (LI)] or 35 cm [defined by ≥ 97.5% LI]) constituting four treatments. Steers grazed Marandu Palisadegrass [Brachiaria brizantha Stapf. cv. Marandu] and post-grazing sward height was 15 cm for all treatments. Forage dry matter intake (DMI) was increased (P = 0.01) when sward height was 25 cm (1.86% vs. 1.32% BW) and decreased (P = 0.04) when 0.3% BW supplement was fed (1.79% vs. 1.38% BW). Total and digestible DMI were not affected by energy supplementation (P = 0.57) but were increased when sward height was 25 cm (P = 0.01). Steers grazing the 25-cm sward height treatment spent less time grazing and more time resting, took fewer steps between feeding stations, and had a greater bite rate compared with 35-cm height treatment (P < 0.05). Energy supplementation reduced grazing time (P = 0.02) but did not affect any other grazing behavior parameter (P = 0.11). Energy supplementation increased (P < 0.01) diet dry matter digestibility but had no effect on crude protein and neutral detergent fiber digestibilities (P = 0.13). Compared with 35-cm pre-grazing sward height, steers at 25 cm presented lower rumen pH (6.39 vs. 6.52) and greater rumen ammonia nitrogen (11.22 vs. 9.77 mg/dL) and N retention (49.7% vs. 20.8%, P < 0.05). The pre-grazing sward height of 25 cm improved harvesting efficiency and energy intake by cattle, while feeding 0.3% of BW energy supplement did not increase the energy intake of cattle on tropical pasture under rotational grazing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here