
EphA2 Is a Lung Epithelial Cell Receptor for Pneumocystis β-Glucans
Author(s) -
Theodore J. Kottom,
Kyle Schaefbauer,
Eva M. Carmona,
Andrew H. Limper
Publication year - 2021
Publication title -
the journal of infectious diseases (online. university of chicago press)/the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1093/infdis/jiab384
Subject(s) - receptor , biology , lung , proinflammatory cytokine , cytokine , eph receptor a2 , immunology , microbiology and biotechnology , inflammation , medicine , biochemistry , receptor tyrosine kinase
Pneumocystis species interaction with myeloid cells is well known, especially in macrophages; however, how the organism binds to lung epithelial cells is incompletely understood. Ephrin type-A receptor 2 (EphA2) has been previously identified as a lung epithelial pattern recognition receptor that binds to fungal β-glucans. Herein, we also report that EphA2 can also bind Pneumocystis β-glucans, both in isolated forms and also on exposed surfaces of the organism. Furthermore, binding of Pneumocystis β-glucans resulted in phosphorylation of the EphA2 receptor, which has been shown to be important for downstream proinflammatory response. Indeed, we also show that interleukin 6 cytokine is significantly increased when lung epithelial cells are exposed to Pneumocystis β-glucans, and that this response could be blocked by preincubation with a specific antibody to EphA2. Our study presents another Pneumocystis lung epithelial cell receptor with implications for initial colonization and possible therapeutic intervention.