z-logo
open-access-imgOpen Access
Theoretical and experimental investigations of different area ratios of a supersonic ejector driven by compressed air
Author(s) -
Ahmed AL-nuaimi,
Mark Worall,
Saffa Riffat
Publication year - 2019
Publication title -
the international journal of low carbon technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.458
H-Index - 26
eISSN - 1748-1325
pISSN - 1748-1317
DOI - 10.1093/ijlct/ctz050
Subject(s) - injector , nozzle , working fluid , bar (unit) , supersonic speed , refrigeration , computational fluid dynamics , mechanics , mechanical engineering , range (aeronautics) , static pressure , engineering , meteorology , physics , aerospace engineering
Ejectors have some advantages such as being simple, reliable and no moving parts. They can be used in air-conditioning and refrigeration applications. This paper presents a comparison of ejector performance, primary pressure (Pp), back pressure (Pb) and area ratios of ejectors (A2/At) predictions by an analytical model and a computational fluid dynamics model for different operating conditions. Six different area ratios of ejector using air as working fluid in this study were proposed and tested experimentally. The variable area ratios of ejectors (A2/At) were used with a range from 10.68 to 30.62. Two sets of ejectors (A and C) are studied and examined depend on the kind of nozzle. The aim of this study was to investigate these ejectors under variation of primary pressure (Pp) (1.5–6.0 bar) and adjustable spindle position (0 to −25 mm). Two groups of ejectors (A and C) were categorized based on the type of nozzle. The experimental results validate the solutions of the main parameters of ejectors using air as working fluid. The results show that group A is more appropriate for higher values of back pressure, while group C is more suitable for high performance of the ejector. Finally, the main parameters were carried out on six different ejectors to find the best combination based on various nozzles and constant area sections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here