z-logo
open-access-imgOpen Access
Numerical modeling of a novel two-stage linear refrigeration compressor
Author(s) -
Hao Shen,
Zhaohua Li,
Kun Liang,
Xinwen Chen
Publication year - 2022
Publication title -
international journal of low-carbon technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.458
H-Index - 26
eISSN - 1748-1325
pISSN - 1748-1317
DOI - 10.1093/ijlct/ctac021
Subject(s) - gas compressor , control theory (sociology) , refrigeration , overall pressure ratio , evaporator , condenser (optics) , coefficient of performance , cooling capacity , discharge pressure , vapor compression refrigeration , mechanics , thermodynamics , mechanical engineering , refrigerant , engineering , computer science , physics , light source , control (management) , optics , artificial intelligence
Linear compressors have started to apply in refrigeration owing to their oil-free operation, capacity modulation by variable stroke and higher seasonal efficiency. Nevertheless, linear compressors are subject to a high seal leakage loss and piston offset (drift), particularly at high pressure ratios. Meanwhile, there is a reduction in the accuracy of resonant frequency prediction due to very nonlinear gas spring at high pressure ratios, leading to a reduction in the compressor efficiency. Two-stage operation is considered as a feasible solution to the aforementioned issues due to the lower pressure ratio for each stage. A numerical model of two-stage compression system using linear compressors is presented in this study to investigate the system performance under various operating conditions. The proposed numerical model consists of a thermodynamic sub-model, a piston dynamic sub-model and a reed valve dynamic sub-model. Experiments are also conducted based on a refrigeration system with two linear compressors connected in parallel to validate the proposed model. The mean absolute percentage errors of the predicted mass flow rate and power input are 2.47% and 8.49%, respectively. The modeling results show that the coefficient of performance is 5.5 for a two-stage compression system and 2.0 for a single-stage compression system while the condenser temperature and evaporator temperature are 50°C and −23°C, respectively. The two-stage compression system offers superior performance to the single-stage system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom