
Barents Sea plankton production and controlling factors in a fluctuating climate
Author(s) -
Anne Britt Sandø,
Erik Askov Mousing,
W. Paul Budgell,
Solfrid Sætre Hjøllo,
Morten D. Skogen,
Bjørn Ådlandsvik
Publication year - 2021
Publication title -
ices journal of marine science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 117
eISSN - 1095-9289
pISSN - 1054-3139
DOI - 10.1093/icesjms/fsab067
Subject(s) - environmental science , oceanography , trophic level , sea ice , ecosystem , plankton , climate change , marine ecosystem , climatology , nutrient , zooplankton , atmospheric sciences , ecology , geology , biology
The Barents Sea and its marine ecosystem is exposed to many different processes related to the seasonal light variability, formation and melting of sea-ice, wind-induced mixing, and exchange of heat and nutrients with neighbouring ocean regions. A global model for the RCP4.5 scenario was downscaled, evaluated, and combined with a biophysical model to study how future variability and trends in temperature, sea-ice concentration, light, and wind-induced mixing potentially affect the lower trophic levels in the Barents Sea marine ecosystem. During the integration period (2010–2070), only a modest change in climate variables and biological production was found, compared to the inter-annual and decadal variability. The most prominent change was projected for the mid-2040s with a sudden decrease in biological production, largely controlled by covarying changes in heat inflow, wind, and sea-ice extent. The northernmost parts exhibited increased access to light during the productive season due to decreased sea-ice extent, leading to increased primary and secondary production in periods of low sea-ice concentrations. In the southern parts, variable access to nutrients as a function of wind-induced mixing and mixed layer depth were found to be the most dominating factors controlling variability in primary and secondary production.