z-logo
open-access-imgOpen Access
OUP accepted manuscript
Author(s) -
Yang Luo,
Xinyi Li,
Xin Wang,
Steven Gazal,
Josep M. Mercader,
Benjamin M. Neale,
José C. Florez,
Adam Auton,
Alkes L. Price,
Hilary Finucane,
Soumya Raychaudhuri
Publication year - 2021
Publication title -
human molecular genetics online/human molecular genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.811
H-Index - 276
eISSN - 1460-2083
pISSN - 0964-6906
DOI - 10.1093/hmg/ddab130
Subject(s) - heritability , biology , linkage disequilibrium , concordance , population , genetics , genotyping , single nucleotide polymorphism , demography , statistics , genotype , mathematics , gene , sociology
It is important to study the genetics of complex traits in diverse populations. Here, we introduce covariate-adjusted linkage disequilibrium (LD) score regression (cov-LDSC), a method to estimate SNP-heritability (${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}})$ and its enrichment in homogenous and admixed populations with summary statistics and in-sample LD estimates. In-sample LD can be estimated from a subset of the genome-wide association studies samples, allowing our method to be applied efficiently to very large cohorts. In simulations, we show that unadjusted LDSC underestimates ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ by 10-60% in admixed populations; in contrast, cov-LDSC is robustly accurate. We apply cov-LDSC to genotyping data from 8124 individuals, mostly of admixed ancestry, from the Slim Initiative in Genomic Medicine for the Americas study, and to approximately 161 000 Latino-ancestry individuals, 47 000 African American-ancestry individuals and 135 000 European-ancestry individuals, as classified by 23andMe. We estimate ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and detect heritability enrichment in three quantitative and five dichotomous phenotypes, making this, to our knowledge, the most comprehensive heritability-based analysis of admixed individuals to date. Most traits have high concordance of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and consistent tissue-specific heritability enrichment among different populations. However, for age at menarche, we observe population-specific heritability estimates of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$. We observe consistent patterns of tissue-specific heritability enrichment across populations; for example, in the limbic system for BMI, the per-standardized-annotation effect size $ \tau $* is 0.16 ± 0.04, 0.28 ± 0.11 and 0.18 ± 0.03 in the Latino-, African American- and European-ancestry populations, respectively. Our approach is a powerful way to analyze genetic data for complex traits from admixed populations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here