
Evaluation of computational genotyping of structural variation for clinical diagnoses
Author(s) -
Varuna Chander,
Richard A. Gibbs,
Fritz J. Sedlazeck
Publication year - 2019
Publication title -
gigascience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.947
H-Index - 54
ISSN - 2047-217X
DOI - 10.1093/gigascience/giz110
Subject(s) - genotyping , computer science , computational biology , data mining , biology , genotype , genetics , gene
Structural variation (SV) plays a pivotal role in genetic disease. The discovery of SVs based on short DNA sequence reads from next-generation DNA sequence methods is error-prone, with low sensitivity and high false discovery rates. These shortcomings can be partially overcome with extensive orthogonal validation methods or use of long reads, but the current cost precludes their application for routine clinical diagnostics. In contrast, SV genotyping of known sites of SV occurrence is relatively robust and therefore offers a cost-effective clinical diagnostic tool with potentially few false-positive and false-negative results, even when applied to short-read DNA sequence data.