z-logo
open-access-imgOpen Access
Robust detection of natural selection using a probabilistic model of tree imbalance
Author(s) -
Enes Dilber,
Jonathan Terhorst
Publication year - 2022
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/iyac009
Subject(s) - biology , selection (genetic algorithm) , probabilistic logic , natural selection , genetics , tree (set theory) , computational biology , evolutionary biology , computer science , artificial intelligence , mathematics , mathematical analysis
Neutrality tests such as Tajima’s D and Fay and Wu’s H are standard implements in the population genetics toolbox. One of their most common uses is to scan the genome for signals of natural selection. However, it is well understood that D and H are confounded by other evolutionary forces—in particular, population expansion—that may be unrelated to selection. Because they are not model-based, it is not clear how to deconfound these tests in a principled way. In this article, we derive new likelihood-based methods for detecting natural selection, which are robust to fluctuations in effective population size. At the core of our method is a novel probabilistic model of tree imbalance, which generalizes Kingman’s coalescent to allow certain aberrant tree topologies to arise more frequently than is expected under neutrality. We derive a frequency spectrum-based estimator that can be used in place of D, and also extend to the case where genealogies are first estimated. We benchmark our methods on real and simulated data, and provide an open source software implementation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom