
A Targeted Histone Acetyltransferase Can Create a Sizable Region of Hyperacetylated Chromatin and Counteract the Propagation of Transcriptionally Silent Chromatin
Author(s) -
Ya-Hui Chiu,
Qun Yu,
Joseph J. Sandmeier,
Xin Bi
Publication year - 2003
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/165.1.115
Subject(s) - chromatin , biology , histone , gene silencing , acetylation , histone acetyltransferase , microbiology and biotechnology , histone methyltransferase , histone code , genetics , gene , nucleosome
Transcriptionally silent chromatin is associated with reduced histone acetylation and its propagation depends on histone hypoacetylation promoted by histone deacetylases. We show that tethered histone acetyltransferase (HAT) Esa1p or Gcn5p creates a segment of hyperacetylated chromatin that is at least 2.6 kb in size and counteracts transcriptional silencing that emanates from a silencer in yeast. Esa1p and Gcn5p counteract URA3 silencing even when they are targeted 1.7 kb downstream of the promoter and >2.0 kb from the silencer. The anti-silencing effect of a targeted HAT is strengthened by increasing the number of targeting sites, but impaired by events that enhance silencing. A tethered HAT can also counteract telomeric silencing. The anti-silencing effect of Gcn5p is abolished by a mutation that eliminated its HAT activity or by deleting the ADA2 gene encoding a structural component of Gcn5p-containing HAT complexes. These results demonstrate that a tethered HAT complex can create a sizable region of histone hyperacetylation and serve as a barrier to encroaching repressive chromatin.