
Characterization of High-Copy-Number Retrotransposons From the Large Genomes of the Louisiana Iris Species and Their Use as Molecular Markers
Author(s) -
Edward K. Kentner,
Michael L. Arnold,
Susan R. Wessler
Publication year - 2003
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/164.2.685
Subject(s) - retrotransposon , biology , genome , ploidy , transposable element , genetics , backcrossing , copy number variation , evolutionary biology , gene
The Louisiana iris species Iris brevicaulis and I. fulva are morphologically and karyotypically distinct yet frequently hybridize in nature. A group of high-copy-number TY3/gypsy-like retrotransposons was characterized from these species and used to develop molecular markers that take advantage of the abundance and distribution of these elements in the large iris genome. The copy number of these IRRE elements (for iris retroelement), is approximately 1 x 10(5), accounting for approximately 6-10% of the approximately 10,000-Mb haploid Louisiana iris genome. IRRE elements are transcriptionally active in I. brevicaulis and I. fulva and their F(1) and backcross hybrids. The LTRs of the elements are more variable than the coding domains and can be used to define several distinct IRRE subfamilies. Transposon display or S-SAP markers specific to two of these subfamilies have been developed and are highly polymorphic among wild-collected individuals of each species. As IRRE elements are present in each of 11 iris species tested, the marker system has the potential to provide valuable comparative data on the dynamics of retrotransposition in large plant genomes.