
PrBn, a Major Gene Controlling Homeologous Pairing in Oilseed Rape (Brassica napus) Haploids
Author(s) -
Eric Jenczewski,
Frédérique Eber,
Agnès Grimaud,
Sylvie Huet,
MarieOdile Lucas,
Hervé Monod,
Anne Marie Chèvre
Publication year - 2003
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/164.2.645
Subject(s) - biology , meiosis , genetics , ploidy , gene , locus (genetics) , brassica , chromosome , hybrid , pairing , botany , superconductivity , physics , quantum mechanics
Precise control of chromosome pairing is vital for conferring meiotic, and hence reproductive, stability in sexually reproducing polyploids. Apart from the Ph1 locus of wheat that suppresses homeologous pairing, little is known about the activity of genes that contribute to the cytological diploidization of allopolyploids. In oilseed rape (Brassica napus) haploids, the amount of chromosome pairing at metaphase I (MI) of meiosis varies depending on the varieties the haploids originate from. In this study, we combined a segregation analysis with a maximum-likelihood approach to demonstrate that this variation is genetically based and controlled mainly by a gene with a major effect. A total of 244 haploids were produced from F(1) hybrids between a high- and a low-pairing variety (at the haploid stage) and their meiotic behavior at MI was characterized. Likelihood-ratio statistics were used to demonstrate that the distribution of the number of univalents among these haploids was consistent with the segregation of a diallelic major gene, presumably in a background of polygenic variation. Our observations suggest that this gene, named PrBn, is different from Ph1 and could thus provide complementary information on the meiotic stabilization of chromosome pairing in allopolyploid species.