
Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach
Author(s) -
Pierre Berthier,
Mark Beaumont,
JeanMarie Cornuet,
Gordon Luikart
Publication year - 2002
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/160.2.741
Subject(s) - estimator , biology , statistic , statistics , population , effective population size , allele frequency , allele , genetic drift , loss of heterozygosity , population size , genetics , mathematics , evolutionary biology , genetic variation , demography , gene , sociology
A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit <50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.