
The Drosophila Gene taranis Encodes a Novel Trithorax Group Member Potentially Linked to the Cell Cycle Regulatory Apparatus
Author(s) -
Stéphane Calgaro,
Muriel Boube,
David L. Cribbs,
Henri-Marc Bourbon
Publication year - 2002
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/160.2.547
Subject(s) - homeotic gene , biology , genetics , chromatin , gene , repressor , polycomb group proteins , phenotype , transcription factor
Genes of the Drosophila Polycomb and trithorax groups (PcG and trxG, respectively) influence gene expression by modulating chromatin structure. Segmental expression of homeotic loci (HOM) initiated in early embryogenesis is maintained by a balance of antagonistic PcG (repressor) and trxG (activator) activities. Here we identify a novel trxG family member, taranis (tara), on the basis of the following criteria: (i) tara loss-of-function mutations act as genetic antagonists of the PcG genes Polycomb and polyhomeotic and (ii) they enhance the phenotypic effects of mutations in the trxG genes trithorax (trx), brahma (brm), and osa. In addition, reduced tara activity can mimic homeotic loss-of-function phenotypes, as is often the case for trxG genes. tara encodes two closely related 96-kD protein isoforms (TARA-alpha/-beta) derived from broadly expressed alternative promoters. Genetic and phenotypic rescue experiments indicate that the TARA-alpha/-beta proteins are functionally redundant. The TARA proteins share evolutionarily conserved motifs with several recently characterized mammalian nuclear proteins, including the cyclin-dependent kinase regulator TRIP-Br1/p34(SEI-1), the related protein TRIP-Br2/Y127, and RBT1, a partner of replication protein A. These data raise the possibility that TARA-alpha/-beta play a role in integrating chromatin structure with cell cycle regulation.