z-logo
open-access-imgOpen Access
The Evolutionary Analysis of “Orphans” From the Drosophila Genome Identifies Rapidly Diverging and Incorrectly Annotated Genes
Author(s) -
Karl Schmid,
Charles F. Aquadro
Publication year - 2001
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/159.2.589
Subject(s) - biology , genetics , gene , genome , population , drosophila melanogaster , evolutionary biology , demography , sociology
In genome projects of eukaryotic model organisms, a large number of novel genes of unknown function and evolutionary history ("orphans") are being identified. Since many orphans have no known homologs in distant species, it is unclear whether they are restricted to certain taxa or evolve rapidly, either because of a lack of constraints or positive Darwinian selection. Here we use three criteria for the selection of putatively rapidly evolving genes from a single sequence of Drosophila melanogaster. Thirteen candidate genes were chosen from the Adh region on the second chromosome and 1 from the tip of the X chromosome. We succeeded in obtaining sequence from 6 of these in the closely related species D. simulans and D. yakuba. Only 1 of the 6 genes showed a large number of amino acid replacements and in-frame insertions/deletions. A population survey of this gene suggests that its rapid evolution is due to the fixation of many neutral or nearly neutral mutations. Two other genes showed "normal" levels of divergence between species. Four genes had insertions/deletions that destroy the putative reading frame within exons, suggesting that these exons have been incorrectly annotated. The evolutionary analysis of orphan genes in closely related species is useful for the identification of both rapidly evolving and incorrectly annotated genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here