A Screen for Modifiers of decapentaplegic Mutant Phenotypes Identifies lilliputian, the Only Member of the Fragile-X/Burkitt's Lymphoma Family of Transcription Factors in Drosophila melanogaster
Author(s) -
Maureen A. Su,
Robert G. Wisotzkey,
Stuart J. Newfeld
Publication year - 2001
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/157.2.717
Subject(s) - decapentaplegic , biology , genetics , drosophila melanogaster , phenotype , genetic screen , enhancer , gene , transcription factor , mutant
The decapentaplegic (dpp) gene directs numerous developmental events in Drosophila melanogaster. dpp encodes a member of the Transforming Growth Factor-beta family of secreted signaling molecules. At this time, mechanisms of dpp signaling have not yet been fully described. Therefore we conducted a genetic screen for new dpp signaling pathway components. The screen exploited a transvection-dependent dpp phenotype: heldout wings. The screen generated 30 mutations that appear to disrupt transvection at dpp. One of the mutations is a translocation with a recessive lethal breakpoint in cytological region 23C1-2. Genetic analyses identified a number of mutations allelic to this breakpoint. The 23C1-2 complementation group includes several mutations in the newly discovered gene lilliputian (lilli). lilli mutations that disrupt the transvection-dependent dpp phenotype are also dominant maternal enhancers of recessive embryonic lethal alleles of dpp and screw. lilli zygotic mutant embryos exhibit a partially ventralized phenotype similar to dpp embryonic lethal mutations. Phylogenetic analyses revealed that lilli encodes the only Drosophila member of a family of transcription factors that includes the human genes causing Fragile-X mental retardation (FMR2) and Burkitt's Lymphoma (LAF4). Taken together, the genetic and phylogenetic data suggest that lilli may be an activator of dpp expression in embryonic dorsal-ventral patterning and wing development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom