z-logo
open-access-imgOpen Access
Embryonic Morphogenesis in Caenorhabditis elegans Integrates the Activity of LET-502 Rho-Binding Kinase, MEL-11 Myosin Phosphatase, DAF-2 Insulin Receptor and FEM-2 PP2c Phosphatase
Author(s) -
Alisa Piekny,
Andreas Wißmann,
Paul E. Mains
Publication year - 2000
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/156.4.1671
Subject(s) - biology , caenorhabditis elegans , morphogenesis , mutant , phosphatase , guanine nucleotide exchange factor , microbiology and biotechnology , myosin , genetics , gene , signal transduction , phosphorylation
let-502 rho-binding kinase and mel-11 myosin phosphatase regulate Caenorhabditis elegans embryonic morphogenesis. Genetic analysis presented here establishes the following modes of let-502 action: (i) loss of only maternal let-502 results in abnormal early cleavages, (ii) loss of both zygotic and maternal let-502 causes elongation defects, and (iii) loss of only zygotic let-502 results in sterility. The morphogenetic function of let-502 and mel-11 is apparently redundant with another pathway since elimination of these two genes resulted in progeny that underwent near-normal elongation. Triple mutant analysis indicated that unc-73 (Rho/Rac guanine exchange factor) and mlc-4 (myosin light chain) act in parallel to or downstream of let-502/mel-11. In contrast mig-2 (Rho/Rac), daf-2 (insulin receptor), and age-1 (PI3 kinase) act within the let-502/mel-11 pathway. Mutations in the sex-determination gene fem-2, which encodes a PP2c phosphatase (unrelated to the MEL-11 phosphatase), enhanced mutations of let-502 and suppressed those of mel-11. fem-2's elongation function appears to be independent of its role in sexual identity since the sex-determination genes fem-1, fem-3, tra-1, and tra-3 had no effect on mel-11 or let-502. By itself, fem-2 affects morphogenesis with low penetrance. fem-2 blocked the near-normal elongation of let-502; mel-11 indicating that fem-2 acts in a parallel elongation pathway. The action of two redundant pathways likely ensures accurate elongation of the C. elegans embryo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here