
Identification of SAS4 and SAS5, Two Genes That Regulate Silencing in Saccharomyces cerevisiae
Author(s) -
Eugenia Y. Xu,
Susan Kim,
Kirstin Replogle,
Jasper Rine,
David H. Rivier
Publication year - 1999
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/153.1.13
Subject(s) - biology , gene silencing , genetics , gene , saccharomyces cerevisiae , chromatin , complementation , allele , null allele , phenotype
In Saccharomyces cerevisiae, chromatin-mediated silencing inactivates transcription of the genes at the HML and HMR cryptic mating-type loci and genes near telomeres. Mutations in the Rap1p and Abf1p binding sites of the HMR-E silencer (HMRa-e**) result in a loss of silencing at HMR. We characterized a collection of 15 mutations that restore the alpha-mating phenotype to MATalpha HMRa-e** strains. These mutations defined three complementation groups, two new groups and one group that corresponded to the previously identified SAS2 gene. We cloned the genes that complemented members of the new groups and identified two previously uncharacterized genes, which we named SAS4 and SAS5. Neither SAS4 nor SAS5 was required for viability. Null alleles of SAS4 and SAS5 restored SIR4-dependent silencing at HMR, establishing that each is a regulator of silencing. Null alleles of SAS4 and SAS5 bypassed the role of the Abf1p binding site of the HMR-E silencer but not the role of the ACS or Rap1p binding site. Previous analysis indicated that SAS2 is homologous to a human gene that is a site of recurring translocations involved in acute myeloid leukemia. Similarly, SAS5 is a member of a gene family that included two human genes that are the sites of recurring translocations involved in acute myeloid leukemia.