
The CRE-Binding Protein dCREB-A Is Required for Drosophila Embryonic Development
Author(s) -
Ronald E. Rose,
Nicole M. Gallaher,
Deborah J. Andrew,
Richard H. Goodman,
Sarah M. Smolik
Publication year - 1997
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/146.2.595
Subject(s) - biology , embryogenesis , microbiology and biotechnology , drosophila melanogaster , gene , transcription factor , transcription (linguistics) , drosophila embryogenesis , tata box , genetics , gene expression , promoter , linguistics , philosophy
We have previously described the cloning of a cyclic AMP response-element (CRE)-binding protein, dCREB-A, in Drosophila melanogaster that is similar to the mammalian CRE-binding protein CREB. dCREB-A is a member of the bZIP family of transcription factors, shows specific binding to the (CRE), and can activate transcription in cell culture. In this report, we describe the gene structure for dCREB-A, protein expression patterns throughout development and the necessary role for this gene in embryogenesis. The 4.5-kb transcript is encoded in six exons that are distributed over 21 kb of DNA. There are seven start sites and no TATA consensus sequences upstream. The dCREB-A protein is expressed in the nuclei of the embryonic salivary gland, proventriculus and stomadeum. Late in embryogenesis, tracheal cell nuclei and specific nuclei within the segments show staining with anti-dCREB-A antibodies. In adult female ovaries, dCREB-A is expressed in the stage 9 through stage 11 follicle cell nuclei. Null mutations of the dCREB-A gene give rise to animals that no longer express dCREB-A protein and die late in embryogenesis before or at hatching. The absolute requirement of dCREB-A for embryogenesis demonstrates a nonredundant function for a CRE-binding protein that will be useful in studying the role of specific signal transduction cascades in development.