z-logo
open-access-imgOpen Access
Cytosine Methylation Associated With Repeat-Induced Point Mutation Causes Epigenetic Gene Silencing in Neurospora crassa
Author(s) -
Jeffrey T. Irelan,
Eric U. Selker
Publication year - 1997
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/146.2.509
Subject(s) - biology , neurospora crassa , genetics , dna methylation , methylation , point mutation , epigenetics , mutation , gene , gene silencing , microbiology and biotechnology , bisulfite sequencing , gene expression , mutant
Repeated DNA sequences are frequently mutated during the sexual cycle in Neurospora crassa by a process named repeat-induced point mutation (RIP). RIP is often associated with methylation of cytosine residues in and around the mutated sequences. Here we demonstrate that this methylation can silence a gene located in nearby, unique sequences. A large proportion of strains that had undergone RIP of a linked duplication flanking a single-copy transgene, hph (hygromycin B phosphotransferase), showed partial silencing of hph. These strains were all heavily methylated throughout the single-copy hph sequences and the flanking sequences. Silencing was alleviated by preventing methylation, either by 5-azacytidine (5AC) treatment or by introduction of a mutation (eth-I) known to reduce intracellular levels of S-adenosylmethionine. Silenced strains exhibited spontaneous reactivation of hph at frequencies of 10(4) to 0.5. Reactivated strains, as well as cells that were treated with 5AC, gave rise to cultures that were hypomethylated and partially hygromycin resistant, indicating that some of the original methylation was propagated by a maintenance mechanism. Gene expression levels were found to be variable within a population of clonally related cells, and this variation was correlated with epigenetically propagated differences in methylation patterns.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here