
Enhanced Deletion Formation by Aberrant DNA Replication in Escherichia coli
Author(s) -
Catherine J. Saveson,
Susan Lovett
Publication year - 1997
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/146.2.457
Subject(s) - biology , dna polymerase , repressor lexa , dna replication , genetics , dna polymerase ii , microbiology and biotechnology , dna , gene , repressor , reverse transcriptase , polymerase chain reaction , transcription factor
Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ the epsilon editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the alpha polymerase (dnal;), the gamma clamp loader complex (holC, dnaX), and the beta clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways.