
Mapping Quantitative Trait Loci for Complex Binary Diseases Using Line Crosses
Author(s) -
Shizhong Xu,
William R. Atchley
Publication year - 1996
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/143.3.1417
Subject(s) - quantitative trait locus , biology , genetics , family based qtl mapping , trait , locus (genetics) , genetic architecture , gene mapping , inclusive composite interval mapping , binary number , computational biology , evolutionary biology , gene , computer science , mathematics , arithmetic , chromosome , programming language
A composite interval gene mapping procedure for complex binary disease traits is proposed in this paper. The binary trait of interest is assumed to be controlled by an underlying liability that is normally distributed. The liability is treated as a typical quantitative character and thus described by the usual quantitative genetics model. Translation from the liability into a binary (disease) phenotype is through the physiological threshold model. Logistic regression analysis is employed to estimate the effects and locations of putative quantitative trait loci (our terminology for a single quantitative trait locus is QTL while multiple loci are referred to as QTLs). Simulation studies show that properties of this mapping procedure mimic those of the composite interval mapping for normally distributed data. Potential utilization of the QTL mapping procedure for resolving alternative genetic models (e.g., single- or two-trait-locus model) is discussed.