
Isolation and Identification of Genes Activating UAS2-Dependent ADH2 Expression in Saccharomyces cerevisiae
Author(s) -
Michael S. Donoviel,
Elton T. Young
Publication year - 1996
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/143.3.1137
Subject(s) - biology , gene , saccharomyces cerevisiae , genetics , enhancer , open reading frame , activator (genetics) , transcription (linguistics) , gene expression , microbiology and biotechnology , peptide sequence , linguistics , philosophy
Two cis-acting elements have been identified that act synergistically to regulate expression of the glucose-repressed alcohol dehydrogenase 2 (ADH2) gene. UAS1 is bound by the trans-activator Adr1p. UAS2 is thought to be the binding site for an unidentified regulatory protein. A genetic selection based on a UAS2-dependent ADH2 reporter was devised to isolate genes capable of activating UAS2-dependent transcription. One set of UAS2-dependent genes contained SPT6/CRE2/SSN20. Multicopy SPT6 caused improper expression of chromosomal ADH2. A second set of UAS2-dependent clones contained a previously uncharacterized open reading frame designated MEU1 (Multicopy Enhancer of UAS2). A frame shift mutation in MEU1 abolished its ability to activate UAS2-dependent gene expression. Multicopy MEU1 expression suppressed the constitutive ADH2 expression caused by cre2-1. Disruption of MEU1 reduced endogenous ADH2 expression about twofold but had no effect on cell viability or growth. No homologues of MEU1 were identified by low-stringency Southern hybridization of yeast genomic DNA, and no significant homologues were found in the sequence data bases. A MEU1/beta-gal fusion protein was not localized to a particular region of the cell. MEU1 is linked to PPR1 on chromosome XII.