z-logo
open-access-imgOpen Access
Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence.
Author(s) -
Barry G. Hall
Publication year - 1988
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/120.4.887
Subject(s) - salicin , biology , mutant , genetics , mutation , operon , cell division , escherichia coli , nucleotide excision repair , gene , dna repair , cell , biochemistry
Escherichia coli K12 strain chi 342LD requires two mutations in the bgl (beta-glucosidase) operon, bglR0----bglR+ and excision of IS103 from within bglF, in order to utilize salicin. In growing cells the two mutations occur at rates of 4 x 10(-8) per cell division and less than 2 x 10(-12) per cell division, respectively. In 2-3-week-old colonies on MacConkey salicin plates the double mutants occur at frequencies of 10(-8) per cell, yet the rate of an unselected mutation, resistance to valine, is unaffected. The two mutations occur sequentially. Colonies that are 8-12 days old contain from 1% to about 10% IS103 excision mutants, from which the Sal+ secondary bglR0----bglR+ mutants arise. It is shown that the excision mutants are not advantageous within colonies; thus, they must result from a burst of independent excisions late in the life of the colony. Excision of IS103 occurs only on medium containing salicin, despite the fact that the excision itself confers no detectable selective advantage and serves only to create the potential for a secondary selectively advantageous mutation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here