z-logo
open-access-imgOpen Access
Sequence, genomic distribution and DNA modification of a Mu1 element from non-mutator maize stocks.
Author(s) -
Vicki L. Chandler,
L. E. Talbert,
F. Lucy Raymond
Publication year - 1988
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/119.4.951
Subject(s) - biology , genetics , genomic dna , direct repeat , dna , transposable element , gene , genome , base sequence
The increased mutation rate of Mutator stocks of maize has been shown to be the result of transposition of Mu elements. One element, Mu1, is present in 10-60 copies in Mutator stocks and approximately 0-3 copies in non-Mutator stocks. The sequence, structure and genomic distribution of an intact Mu1 element cloned from the non-Mutator inbred line B37 has been determined. The sequence of this element, termed Mu1.4-B37, is identical to Mu1 and it is flanked by 9-bp direct repeats indicative of a target site duplication. Mu1.4-B37 is not in the same genomic location in all stocks, which further suggests that it transposed into its genomic location in B37. We previously reported that in genomic DNA this element is modified such that certain methylation-sensitive restriction enzymes will not cut sites within the element. This is similar to that observed for Mu elements in Mutator stocks that have lost activity. We report herein that the Mu1.4-B37 element loses its modification and becomes accessible to digestion when placed in an active Mutator stock by genetic crosses. This suggests that factors conditioning unmodified elements are dominant in the initial cross between Mutator and non-Mutator stocks. In F2 individuals that have subsequently lost Mutator activity the Mu1.4-B37 element again becomes modified as do most of the Mu elements in the stock. Thus, the modification state of the Mu1.4-B37 element and the other Mu1-like elements correlates with Mutator activity. We hypothesize that factor(s) within an active Mutator stock may inhibit the modification of Mu elements, and that this activity is missing in non-Mutator stocks and may become limiting in certain Mutator stocks resulting in DNA modification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here