
INTRACHROMOSOMAL GENE CONVERSION AND THE MAINTENANCE OF SEQUENCE HOMOGENEITY AMONG REPEATED GENES
Author(s) -
Thomas Nagylaki,
Thomas D. Petes
Publication year - 1982
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/100.2.315
Subject(s) - biology , gene conversion , genetics , fixation (population genetics) , gene , homogeneity (statistics) , fixation time , recombination , medicine , statistics , mathematics , audiology
Intrachromosomal gene conversion is the non-reciprocal transfer of information between a pair of repeated genes on a single chromosome. This process produces eventual sequence homogeneity within a family of repeated genes. An evolutionary model for a single chromosome lineage was formulated and analyzed. Expressions were derived for the fixation probability, mean time to fixation or loss, and mean conditional fixation time for a variant repeat with an arbitrary initial frequency. It was shown that a small conversional advantage or disadvantage for the variant repeat (higher or lower probability of producing two variant genes by conversion than two wild-type genes) can have a dramatic effect on the probability of fixation. The results imply that intrachromosomal gene conversion can act sufficiently rapidly to be an important mechanism for maintaining sequence homogeneity among repeated genes.