z-logo
open-access-imgOpen Access
Bayesian optimization for demographic inference
Author(s) -
Ekaterioskova,
Viacheslav Borovitskiy
Publication year - 2023
Publication title -
g3 genes genomes genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.468
H-Index - 66
ISSN - 2160-1836
DOI - 10.1093/g3journal/jkad080
Subject(s) - inference , pipeline (software) , biology , population , bayesian probability , computer science , approximate bayesian computation , bayesian inference , machine learning , statistics , econometrics , artificial intelligence , mathematics , demography , sociology , programming language
Inference of demographic histories of species and populations is one of the central problems in population genetics. It is usually stated as an optimization problem: find a model's parameters that maximize a certain log-likelihood. This log-likelihood is often expensive to evaluate in terms of time and hardware resources, critically more so for larger population counts. Although genetic algorithm-based solution has proven efficient for demographic inference in the past, it struggles to deal with log-likelihoods in the setting of more than three populations. Different tools are therefore needed to handle such scenarios. We introduce a new optimization pipeline for demographic inference with time consuming log-likelihood evaluations. It is based on Bayesian optimization, a prominent technique for optimizing expensive black box functions. Comparing to the existing widely used genetic algorithm solution, we demonstrate new pipeline's superiority in the limited time budget setting with four and five populations, when using the log-likelihoods provided by the moments tool.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom