z-logo
open-access-imgOpen Access
Fungal and bacterial community dynamics in substrates during the cultivation of morels (Morchella rufobrunnea) indoors
Author(s) -
Reid Longley,
Gian Maria Niccolò Benucci,
Gary L. Mills,
Gregory Bonito
Publication year - 2019
Publication title -
fems microbiology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.899
H-Index - 151
eISSN - 1574-6968
pISSN - 0378-1097
DOI - 10.1093/femsle/fnz215
Subject(s) - biology , internal transcribed spacer , firmicutes , microbial population biology , botany , ascocarp , 16s ribosomal rna , ribosomal rna , bacteria , gene , genetics , taxonomy (biology)
Morel mushrooms (Morchella, Pezizales) are highly prized edible fungi. Approaches to cultivate morels indoors in pasteurized composted substrates have been successful for Morchella rufobrunnea. We used DNA amplicon sequencing of the Internal Transcribed Spacer (ITS) ribosomal DNA and 16S rRNA gene to follow bacterial and fungal communities in substrates during indoor morel cultivation. Our goal was to determine changes in microbial communities at key stages of morel cultivation, which included primordia development, fundament initiation, differentiation and maturation. Additionally, we compared microbial communities between trays that successfully fruited to those that produced conidia and primordia but aborted before ascocarp formation (non-fruiting). The prokaryotic community was dominated by Firmicutes belonging to Bacillus and Paenibacillus with a lower abundance of Flavobacteria. At earlier stages, the fungal community was dominated by Pezizomycetes including Morchella and other species, whereas, later in the cropping cycle Sordariomycetes dominated. Additionally, differences were observed between trays with successful fruiting, which were dominated by Gilmaniella; compared to trays that did not fruit, which were dominated by Cephalotrichum. Our findings inform understanding of microbial community dynamics during morel cultivation, and show that fungal genera, such as Gilmaniella, and prokaryotic genera, such as Bacillus, are abundant in substrates that support M. rufobrunnea fruiting.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here