z-logo
open-access-imgOpen Access
Glut-1 explains the evolutionary advantage of the loss of endogenous vitamin C-synthesis
Author(s) -
Tabea C Hornung,
Hans Konrad Biesalski
Publication year - 2019
Publication title -
evolution medicine and public health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.427
H-Index - 22
ISSN - 2050-6201
DOI - 10.1093/emph/eoz024
Subject(s) - ascorbic acid , vitamin c , micronutrient , intracellular , context (archaeology) , vitamin , biochemistry , biology , extracellular , chemistry , food science , paleontology , organic chemistry
During evolution, some species including humans, monkeys and fruit bats lost the ability for ascorbic acid (AA) biosynthesis due to inactivation of the enzyme l-gulono-lactone oxidase (GLO) and subsequently became dependent on dietary vitamin C. There are four current hypotheses in relation to the benefit of vitamin C dependence in the context of adaptation and reproduction. Here we advance and test a new 'electron transfer hypothesis', which focusses on the role of the expression of glucose transporter 1 (Glut-1) in red blood cells (RBCs) in recycling vitamin C, thereby increasing the efficiency of micronutrient uptake.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom