z-logo
Premium
Identification of the RNA polymerase II subunit hsRPB7 as a novel target of the von Hippel—Lindau protein
Author(s) -
Na Xi,
Duan Hai Ou,
Messing Edward M.,
Schoen Susan R.,
Ryan Charlotte K.,
di Sant'Agnese P.Anthony,
Golemis Erica A.,
Wu Guan
Publication year - 2003
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/cdg410
Subject(s) - medicine , library science , gerontology , computer science
Inactivation of the von Hippel—Lindau (VHL) tumor suppressor gene is linked to the hereditary VHL disease and sporadic clear cell renal cell carcinomas (CCRCC). VHL‐associated tumors are highly vascularized, a characteristic associated with overproduction of vascular endothelial growth factor (VEGF). The VHL protein (pVHL) is a component of the ubiquitin ligase E3 complex, targeting substrate proteins for ubiquitylation and subsequent proteasomic degradation. Here, we report that the pVHL can directly bind to the human RNA polymerase II seventh subunit (hsRPB7) through its β‐domain, and naturally occurring β‐domain mutations can decrease the binding of pVHL to hsRPB7. Introducing wild‐type pVHL into human kidney tumor cell lines carrying endogenous mutant non‐functional pVHL facilitates ubiquityl ation and proteasomal degradation of hsRPB7, and decreases its nuclear accumulation. pVHL can also suppress hsRPB7‐induced VEGF promoter transactivation, mRNA expression and VEGF protein secretion. Together, our results suggest that hsRPB7 is a downstream target of the VHL ubiquitylating complex and pVHL may regulate angiogenesis by targeting hsRPB7 for degradation via the ubiquitylation pathway and preventing VEGF expression.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here