Premium
The tRNA‐binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation
Author(s) -
Qiu Hongfang,
Dong Jinsheng,
Hu Cuihua,
Francklyn Christopher S.,
Hinnebusch Alan G.
Publication year - 2001
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/20.6.1425
Subject(s) - biology , transfer rna , moiety , protein kinase domain , kinase , biochemistry , binding domain , cyclin dependent kinase 9 , binding site , microbiology and biotechnology , protein kinase a , cyclin dependent kinase 2 , stereochemistry , rna , gene , mutant , chemistry
GCN2 stimulates translation of GCN4 mRNA in amino acid‐starved cells by phosphorylating translation initiation factor 2. GCN2 is activated by binding of uncharged tRNA to a domain related to histidyl‐tRNA synthetase (HisRS). The HisRS‐like region contains two dimerization domains (HisRS‐N and HisRS‐C) required for GCN2 function in vivo but dispensable for dimerization by full‐length GCN2. Residues corresponding to amino acids at the dimer interface of Escherichia coli HisRS were required for dimerization of recombinant HisRS‐N and for tRNA binding by full‐length GCN2, suggesting that HisRS‐N dimerization promotes tRNA binding and kinase activation. HisRS‐N also interacted with the protein kinase (PK) domain, and a deletion impairing this interaction destroyed GCN2 function without reducing tRNA binding; thus, HisRS‐N–PK interaction appears to stimulate PK function. The C‐terminal domain of GCN2 (C‐term) interacted with the PK domain in a manner disrupted by an activating PK mutation ( E803V ). These results suggest that the C‐term is an autoinhibitory domain, counteracted by tRNA binding. We conclude that multiple domain interactions, positive and negative, mediate the activation of GCN2 by uncharged tRNA.