z-logo
Premium
PNPase autocontrols its expression by degrading a double‐stranded structure in the pnp mRNA leader
Author(s) -
Jarrige AnneCharlotte,
Mathy Nathalie,
Portier Claude
Publication year - 2001
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/20.23.6845
Subject(s) - biology , messenger rna , purine nucleoside phosphorylase , microbiology and biotechnology , genetics , virology , gene , enzyme , biochemistry , purine
Polynucleotide phosphorylase synthesis is autocontrolled at a post‐transcriptional level in an RNase III‐dependent mechanism. RNase III cleaves a long stem–loop in the pnp leader, which triggers pnp mRNA instability, resulting in a decrease in the synthesis of polynucleotide phosphorylase. The staggered cleavage by RNase III removes the upper part of the stem–loop structure, creating a duplex with a short 3′ extension. Mutations or high temperatures, which destabilize the cleaved stem–loop, decrease expression of pnp , while mutations that stabilize the stem increase expression. We propose that the dangling 3′ end of the duplex created by RNase III constitutes a target for polynucleotide phosphorylase, which binds to and degrades the upstream half of this duplex, hence inducing pnp mRNA instability. Consistent with this interpretation, a pnp mRNA starting at the downstream RNase III processing site exhibits a very low level of expression, regardless of the presence of polynucleotide phosphorylase. Moreover, using an in vitro synthesized pnp leader transcript, it is shown that polynucleotide phosphorylase is able to digest the duplex formed after RNase III cleavage.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here