z-logo
Premium
The active site architecture of Pisum sativum β‐carbonic anhydrase is a mirror image of that of α‐carbonic anhydrases
Author(s) -
Kimber Matthew S.,
Pai Emil F.
Publication year - 2000
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/19.7.1407
Subject(s) - biology , pisum , carbonic anhydrase , biochemistry , alpha (finance) , beta (programming language) , sativum , active site , enzyme , botany , medicine , construct validity , nursing , computer science , programming language , patient satisfaction
We have determined the structure of the β‐carbonic anhydrase from the dicotyledonous plant Pisum sativum at 1.93 Å resolution, using a combination of multiple anomalous scattering off the active site zinc ion and non‐crystallographic symmetry averaging. The molecule assembles as an octamer with a novel dimer of dimers of dimers arrangement. Two distinct patterns of conservation of active site residues are observed, implying two potentially mechanistically distinct classes of β‐carbonic anhydrases. The active site is located at the interface between two monomers, with Cys160, His220 and Cys223 binding the catalytic zinc ion and residues Asp162 (oriented by Arg164), Gly224, Gln151, Val184, Phe179 and Tyr205 interacting with the substrate analogue, acetic acid. The substrate binding groups have a one to one correspondence with the functional groups in the α‐carbonic anhydrase active site, with the corresponding residues being closely superimposable by a mirror plane. Therefore, despite differing folds, α‐ and β‐carbonic anhydrase have converged upon a very similar active site design and are likely to share a common mechanism.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here