z-logo
Premium
Ephrin‐A5 modulates cell adhesion and morphology in an integrin‐dependent manner
Author(s) -
Davy Alice,
Robbins Stephen M.
Publication year - 2000
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/19.20.5396
Subject(s) - ephrin , erythropoietin producing hepatocellular (eph) receptor , biology , microbiology and biotechnology , integrin , cell adhesion , receptor protein tyrosine kinases , receptor tyrosine kinase , fibronectin , proto oncogene tyrosine protein kinase src , signal transduction , receptor , cell , biochemistry , extracellular matrix
The ephrins are membrane‐tethered ligands for the Eph receptor tyrosine kinases, which play important roles in patterning of the nervous and vascular systems. It is now clear that ephrins are more than just ligands and can also act as signalling‐competent receptors, participating in bidirectional signalling. We have recently shown that ephrin‐A5 signals within caveola‐like domains of the plasma membrane upon engagement with its cognate Eph receptor, leading to increased adhesion of the cells to fibronectin. Here we show that ephrin‐A5 controls sequential biological events that are consistent with its role in neuronal guidance. Activation of ephrin‐A5 induces an initial change in cell adhesion followed by changes in cell morphology. Both effects are dependent on the activation of β1 integrin involving members of the Src family of protein tyrosine kinases. The prolonged activation of ERK‐1 and ERK‐2 is required for the change in cell morphology. Our work suggests a new role for class A ephrins in specifying the affinity of the cells towards various extracellular substrates by regulating integrin function.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here