Premium
Role of ribosome recycling factor (RRF) in translational coupling
Author(s) -
Inokuchi Yoshio,
Hirashima Akikazu,
Sekine Yasuhiko,
Janosi Laszlo,
Kaji Akira
Publication year - 2000
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/19.14.3788
Subject(s) - biology , ribosome , translation (biology) , microbiology and biotechnology , coupling (piping) , posttranslational modification , genetics , rna , biochemistry , messenger rna , gene , mechanical engineering , engineering , enzyme
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine–Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.